Estimating the Unseen (getting more from your data)

Gregory Valiant

UC Berkeley -> Microsoft -> Stanford

Data, Data, Everywhere

Data, Data, Everywhere

New sorts/scales of datasets
New sorts of *algorithmic* challenges

Central Challenge: How to use data efficiently

3 reasons Data *efficiency* is **increasingly** important despite so much data

- In some domains, datasets can't grow much more
- Large datasets, but even more complex objects
- In general: the more resources, the more potential....

Many fundamental questions still unanswered!!

A Basic Question

Given independent samples from a distribution (of discrete support):

Empirical distribution ↔ optimally approximates *seen* portion of distribution

- What can we infer about the *unseen* portion?
- How can inferences about the unseen portion yield better estimates of distribution properties?

Some concrete problems

Q1: Given a length n vector, how many indices must we look at to estimate # distinct elements, to +/- εn (w.h.p)? [distinct elements problem]

Q2: Given indep. samples from D supported on $\{1, ..., n\}$, how many samples required to estimate entropy(D) to within $+/-\epsilon$ (w.h.p)?

Q3: Given samples from D1 and D2 supported on $\{1,2,...,n\}$, how many samples required to estimate Dist(D1,D2) to within $+/-\epsilon$ (w.h.p)?

Some concrete problems

R.A. Fisher's Butterflies

How many new species if I observe for another period?

h₁-h₂+h₃-h₄+h₅-...

Turing's Enigma Codewords

Probability mass of unseen codewords

h₁ / (number of samples)

Corbet's Butterfly Data

("Histogram" of the samples)

Reasoning Beyond the Empirical Distribution

Histogram based on 10000 samples:

Maximum Likelihood Interpretation

What is the distribution that maximizes the likelihood of yielding the observed histogram (among distributions of support *n*)?

Linear Programming

"Find distributions whose expected histogram are *close* to the observed histogram of the samples"

Technical challenge: show "diameter" of feasible region is small

Θ(n/ log n) samples, and OPTIMAL

So...does this actually work in practice?

YES!!

Performance in Practice (entropy)

Zipf: power law distr. $p_i \alpha 1/j$ (or $1/j^c$)

Performance in Practice (entropy)

Performance in Practice (support size)

Task: Pick a (short) passage from *Hamlet*, then estimate # distinct words in *Hamlet*

The Big Picture

Estimating Statistical Properties

100+ years of statistics

"Linear estimators"

$$c_1 \cdot h_1 + c_2 \cdot h_2 + c_3 \cdot h_3 + \cdots$$

[Our Approach]
Linear Programming
Substantial improvements!

"What richness of algorithmic machinery is necessary to effectively solve these problems?"

Thm [VV]:

Exist near-optimal "Linear Estimators", but...