Estimating the Unseen
(getting more from your data)

Gregory Valiant
UC Berkeley -> Microsoft -> Stanford
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Data, Data, Everywhere

New sorts/scales of datasets
New sorts of algorithmic challenges

Central Challenge: How to use data efficiently

3 reasons Data efficiency is increasingly important

espite.so much data

ecause
n some domains, datasets can’t grow much more
_arge datasets, but even more complex objects
n general: the more resources, the more potential....

Many fundamental questions still unanswered!!




A Basic Question

Given independent samples from a distribution
(of discrete support):

Empirical distribution <
optimally approximates seen
portion of distribution

* What can we infer about
the unseen portion?

How can inferences about
the unseen portion yield
better estimates of
distribution properties?




Some concrete problems

Qa: Given a length n vector, how many indices must
we look at to estimate # distinct elements, to +/- en
(w.h.p)? [distinct elements problem]

] ] ]

Q2: Given indep. samples from D supported on {z,
...,n}, how many samples required to estimate
entropy(D) to within +/- € (w.h.p)?

Q3: Given samples from D1 and D2 supported on
{1,2,...,n}, how many samples required to estimate
i myspace Dist(D1,D2) to within +/- € (w.h.p)?




Some concrete problems

lTriviaI 1 Previous 1 Answer

. O(n)
Distinct [BarYossef et al.’01]

Flements n [P.Valiant, ‘08]
[Raskhodnikova et al. ‘og]
1 +

O(n)

[Batu et al."01,’02]

Entropy [Paninski, '03,'04]

O | [Dasgupta et al, ‘o5]
. —40O(nlogn) o(n)
Distance [Goldreich et al. ‘96]

1 t[Batu et al. '00,'01]




R.A. Fisher’s Turing’s Enigma
Butterflies Codewords ™~

How many new species Probability mass of
if | observe for another unseen codewords

period?

hl-h2+h3-h4+h5-___

Corbet’s Butterfly Data
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(“Histogram” of the samples)




Reasoning Beyond the Empirical
Distribution

Histogram based on 10000 samples:
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Maximum Likelihood
Interpretation

What is the distribution that
maximizes the likelihood of yielding
the observed histogram
(among distributions of support n) ?




Linear Programming

"Find distributions whose expected histogram are
close to the observed histogram of the samples”

Feasible Region

O(n/log n) samples, and OP




So...does this actually work in practice?

YES!!




Performance in Practice (entropy)
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Performance in Practice (entropy)
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Performance in Practice (support size)

Task: Pick a (short) passage from Hamlet,
then estimate # distinct words in Hamlet

Estimating # Distinct Words in Hamlet

Estimate

—Naive ||
— CAE
—e— Unseen

1 1.5 2
Length of Passage




The Big Picture

Estimating Statistical Properties

100+ years of statistics

[Our Approach]
Linear Programming
Substantial improvements!

“"Linear estimators”

¢, h, + e hy+crhy+ oo

Thm [VV]:
Exist near-optimal " Linear Estimators”, but...




